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Effective glucose control in the Intensive Care Unit (ICU) setting 
has the potential to lower mortality rates [1], shorten length 
of stay [2] and decrease overall cost of care [3]. Yet the goal of 
achieving this control remains elusive due to the limitations of our 
current open loop methods [4] that still require manual testing of 
glucose values, entry of the measured value into local or web 
based glucose control software, and manual adjustment of the 
intravenous pumps infusing insulin into the ICU patient. In order 
to improve overall glucose control, ICU care givers will need to be 
empowered with a closed loop glucose control system.

The three main components of a closed loop glucose control 
system are a glucose sensor(s), control algorithm, and intravenous 
pump(s). Current intravenous pumps are accurate and reliable 
enough for a closed loop system, so the two components 
preventing completion of the system are the glucose sensor(s) 
and controller. An accurate and reliable glucose sensor array is a 
must, as trying to control a system without real time knowledge 
of mission critical sensor data will invariably lead to unacceptable 
outcomes, as has been seen in the aerospace industry [5]. In 
fact, the aerospace industry provides an excellent example of 
how to properly engineer a safe and effective control system, 
as they routinely build in redundancy of mission critical system 
components to improve reliability and will also use different 
methods of measurement to improve overall accuracy.

Studies on type I diabetics have shown that a multi-sensor 
array improves overall accuracy of the system [6]. The following 
equation can be used as a guide to determine the number of 
sensors N, needed given a known sensor failure rate p  and a 
desired uptime rate q, where p, q ∈ [0,1]:
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As can be seen from Table 1 if the closed loop system requirement 
is to have a complete sensor failure rate limited to less than 10 
min over a typical 96 h ICU length of stay, which is a greater than 
99.8% uptime rate, and the known sensor failure rate is 1%, then 
the system requirement is to have two independent glucose 
sensors in place. 

Current CE marked blood based glucose sensors designed for 
use in the ICU setting have already been shown to be both highly 
accurate and reliable, with an uptime rate that exceeds 99% [7]. 
In addition, the next generation interstitial continuous glucose 

monitoring (CGM) system that Dexcom is developing with 
assistance from Google will not be affected by acetaminophen, 
making it a potential excellent candidate as the second sensor 
in a glucose array [8]. The ability to avoid interference from 
acetaminophen is important as this medication is known to 
affect the accuracy of current interstitial CGM systems, yet is 
ubiquitously used in the hospital setting. As sensor reliability is 
far more important than accuracy when it comes to closed loop 
glucose control [9], the improved uptime rate of a two sensor 
array will more than offset the decreased accuracy that will occur 
by averaging simultaneous blood and interstitial glucose values.

The second component of a closed loop system that is currently 
lacking is the control system. To date, the two main methods 
used to develop glucose control systems have been proportional 
integral derivative (PID) [10] and model predictive control (MPC) 
[11]. However, we have recently shown in a large scale simulation 
study that an artificial intelligence (AI) based controller may be 
capable of achieving results that are superior to those of both PID 
and MPC controllers [12]. These original results were recently 
corroborated in a comparative simulation study whereby the AI 
based controller was found to achieve overall results that were 
76% better than PID [13]. The controller for a closed loop system 
should be able to iteratively cycle itself every 5-10 min in order 
to keep up with the highly nonlinear glucose-insulin system and 
should have proper safety features built in such as automatic 
recognition of spurious glucose sensor readings and a safe mode 
when all sensor readings are lost.

Although all of the components for a safe and effective closed 
loop glucose control system for ICU patients currently exist, 
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the main impediment to bringing such a system to the market 
is lack of collaboration between the companies that have either 
already developed the necessary components [7,14] or are in an 
earlier stage in development [15]. If the best in class of available 
ICU based glucose sensors is combined with the best in class of 

available ICU based glucose controllers and the overall system is 
properly designed and engineered by a known engineering firm 
with class III medical device experience, the road to obtaining 
regulatory approval and bringing a safe and effective closed loop 
glucose control device to market will become much shorter.

Sensor Failure 
rate

Sensor # needed for uptime  
to exceed 95%

Sensor # needed for uptime  
to exceed 99%

Sensor # needed for uptime  
to exceed 99.9%

Sensor # needed for uptime  
to exceed 99.999%

0.1% 1 1 2 2
1 1 2 2 3
2 1 2 2 3
5 2 2 3 4

10 2 3 4 6

Table 1 Determines number of sensors needed to achieve a desired uptime rate given a known sensor failure rate.
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