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Introduction
Bacteria are wildly spread in nature, and some of them are 
human pathogen. To survive or even persistently infect in 
several intricate host environments, bacteria need adapt to 
the environment. Organisms are able to sense environmental 
signals and transduce the signals to the intracellular to initiate 
the process of transcription, translation, protein expression, 
modification and other biological processes of related genes. 
The process of sensing the environment and making adaptive 
response to external stimuli is often mediated by two-component 
signal-transduction systems (TCSTSs). The signal transduction 
system is activated by external stimuli including temperature, 
nutrients and pH [1]. 

Two component systems are very common in nature. This system 
has been considered to be restricted in prokaryotes for a long 
time. However, the emerging evidences indicate that this system 
also exists in many eukaryotes, including yeast, fungi, slime molds, 
and higher plants. But the system so far has not been found in 
vertebrates. It is firstly identified by Ninfa and Magasanik when 
they studied nitrogen regulatory protein of Escherichia coli (E. 
coil) in 1986 [2]. Meanwhile, in 1986 Nixon found that there were 
many sensory systems in bacteria. By comparing the amino acid 
sequences, they found that these sensory system components 
were similar to the nitrogen regulatory system of E. coil [3]. 

Representative TCSTS consists of two different types of protein, 
a histidine kinase (HK) and a response regulator (RR). The 
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HK is responsible for responding to external stimuli by 
autophosphorylation, subsequently transfers this phosphate 
group to the RR. This phosphorylation changes the characters of 
RR protein and enables the RR to bind to the promoter region of 
target gene(s), functioning as a transcriptional factor [4] (Figure 
1). These signal transduction pathways need phosphorylase 
to dephosphorylate and restore the unstimulated state of 
RR, thus the system can respond to the external stimuli again. 
The phosphorylase can be a histidine kinase itself, a response 
regulator, or one of the other proteins. 

Based on genomic sequencing, a lot of gene families have 
been identified. The two component system gene is firstly 
demonstrated by this method. Researchers have made extensive 
studies on various two component systems, particularly which 
plays an important role in cell physiology, information transfer, 
and individual growth in bacterial pathogens. Moreover two 
component systems have been shown in a number of cases to 
regulate virulence factors, which are crucial for the pathogenicity 
of many bacterial species [5], competence [6], biofilm formation 
[7-9] and cell envelope response [10], and antibiotics resistance 
[5] (Figure 2). Indeed, reports have shown that inhibitors of two 
component systems have good antibacterial activity [11]. Two 
component systems have four similar characters which may 
make the system to be a good potential target for antimicrobials. 
The characters are as follows: ① The HK and RR proteins have 
significant homology respectively in different genera of bacteria, 
especially in the residues residing near active sites [12]; ② 
The two-component signal transduction system can regulate 
the expression of the pathogen essential virulence factors that 
are required for survival in the host use to regulate of essential 
virulence factors [13-15]; ③ There are many two component 
systems in bacteria, and some are vital for viability [16, 17]; ④ 
The signal transduction in mammals has an entirely different 
mechanism. Taken together, this family of proteins may be very 
suited as a target for the development of novel antibacterials. 

TCSTSs Protein Structure 
The HK is located in the cell membrane and usually has one or 
more transmembrane regions. The HK forms a dimer to fulfill 
functions and its C-terminal contains a histidine kinase domain 
(about 200 residues). Autophosphorylation process happens 
in this domain and the phosphorylation sites are generally 
conserved histidine residues. The sequence alignment showed 
that this domain has five unique conserved regions: H, N, D, F and 
G [12]. One module that can sense the external signal is named 
as input module and is connected with histidine kinase domain. 
The N-terminal of HK is very different, usually comprising several 
transmembrane domains. A linker connects the histidine kinase 
domain and the transmembrane domain (Figure 2B). These 
structure features make the HK can sensitively sense the change 
of the external environment. 

The RR protein resides in the cytoplasm, and has a highly 
conserved receiver domain in its N-terminal region (about 110 
amino acids) by comparing different RR proteins and an effector 
or output domain within the C-terminal part that can mostly 
bind DNA (Figure 2C). The phosphorylation sites are aspartic acid 

residues. Some of the RR proteins are transcription regulators. 
The signal transduction process is composed of the signal input, 
histidine autophosphorylation, response regulator protein 
phosphorylation and signal output component. 

Regulation of Virulence Factors Expression 
Virulence is very crucial in the infection and pathogenesis of 
the pathogens. The regulation of virulence factors expression is 
controlled by many network systems and the two component 
system is one of them. Based on genomic sequencing, many 
putative HK proteins, with one ‘orphan’ RR proteins have been 
found in bacteria. For example, 31, 13 and 14 two component 
systems are found in E. coli, Streptococcus pneumoniae (S. 
pneumoniae) and Streptococcus mutans (S. mutans) respectively 
[18-21]. Some of them have been proved that they can regulate 
the expression of virulence factors. LiaS, one of two component 
system proteins in S. mutans, negatively regulates of the 

 

Figure 1 The process of sensing the environment changes and 
making adaptive response to external stimuli by two-
component signal-transduction systems. 

 

Figure 2 The effect of the two component system on main 
biological processes (Figure 2A), and domain 
organization of the HK (Figure 2B) and RR protein 
(Figure 2C).
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expression of GbpC, which is a very important surface-associated 
protein. LiaS binds dextran and facilitates the biofilm formation 
of the organism, and adherence and accumulation on the tooth. 
In addition, LiaS activates the production of mutacin IV, which is 
under the control of a common regulatory network along with 
gbpC [22]. The two component family member HK/RR04 has 
been reported to relate to the regulation of the manganese 
transporter PsaA [23]. Moreover, another two component system 
protein HK/RR06 regulates the expression of the virulence factor 
CbpA [24]. The CiaRH system has been shown that it influences 
the expression of high-temperature requirement A (HtrA), 
which is a serine protease and plays vital roles in protein quality 
control in prokaryotes and eukaryotes [25, 26]. The ArlRS two-
component system of Staphylococcus aureus is related to the 
expression of virulence factors such as cell-wall-associated 
protein A. The deletion of ArlRS attenuates the effect of DNA 
supercoiling regulators on protein A expression, indicating that 
ArlRS system indirectly regulates the expression of protein A [27]. 
BlpRH two component systems is linked to the production of 
barteriocin in S. pneumoniae [4]. Two component system protein 
RitR negatively regulates the piu hemin-iron transporter system 
of S. pneumoniae, thus suppresses the uptake of iron [28]. The 
two component system protein RR09 contributes to the virulence 
of S. pneumoniae in the manner of serotype-specific [29]. The 
two component system VicR/K may mediate the expression of 
the virulence factor PspA of S. pneumoniae [30]. These findings 
provide conclusive evidence for regulation of the virulence of the 
two component systems and their contribution to the virulence 
of the organism. 

Competence 
The ability of naturally acquiring exogenous DNA is known 
as “competence for transformation” among more than 70 
bacterial species [31]. Competence has been extensively shown 
to form transiently in lag phase [32] or during exponential 
growth [33-37]. And competence is involved in DNA transport, 
recombination [38] and repair [39], and/or nutritional 
requirements via supplying a carbon, nitrogen, phosphorus, 
and energy source [40]. Competence for genetic transformation 
of bacteria is reported to be regulated by the two component 
system ComD/E [6-9], which activates the early competence 
genes in response to a competence-stimulating peptide [12, 13]. 
The precursor of the competence-stimulating peptide is encoded 
by the comC gene [6, 41, 42], and secreted to the extracellular 
after modification, acting on the ComDE system to trigger 
expression of related genes [43]. Deletion of comE eliminates 
both response to synthetic activator peptide and endogenous 
competence induction [6]. ComE (R120S) overexpression 
activates ComD-dependent transformation in the absence of the 
competence-stimulating peptide in S. pneumoniae [44]. There 
is a correlation between the level of comCDE transcripts and 
developmental transformability in culture. In addition, another 
two component system CiaRH is linked to competence regulation 
[5]. The mutation of CiaH results in competence deficiency of S. 
pneumoniae, suggesting that CiaH modulates the competence 
development [45]. And two component systems HK/RR11, 
has been reported to be related to genetic competence in S. 

mutans [7-9]. Moreover, the two component system VicRK partly 
regulates the competence-stimulating peptide (CSP) production 
in S. mutans [46]. Furthermore, the two component system 
protein Chis controls a novel transmembrane regulator TfoS by 
post-translational regulation, whose inactivation abolishes the 
competence [47]. PnpR/S, a PhoP/Q-like two component, also 
regulates competence of S. pneumoniae [19, 25]. These results 
indicate that the two component system modulates competence 
of bacteria to transport and recombine DNA. 

Effect on Biofilm Formation and Cell 
Envelope Stress Response
Two component systems, named ComDE and HK/RR11, have 
been shown to be involved in biofilm formation. Loss-of-function 
mutation of hk11 or rr11 leads to defects in biofilm formation, 
which presents reduced biomass, sponge-like architecture with 
large gaps, and longer chains composition of cells than those of 
the parent biofilm in S. mutans [7-9]. Maintaining integrity of 
cell envelope is crucial for bacterial survival. As reported, the 
two component system LiaRS of Bacillus subtilis is a part of the 
regulatory network of cell wall stress response and is critical 
for maintaining integrity of the bacterial cell wall [48]. LiaR can 
regulate cell wall synthesis, pili formation and cell membrane 
modification in group B Streptococcus (GBS) [49]. And the VicRK 
system modulates several genes associated with cell membrane 
and cell wall homeostasis in S. pneumoniae [10]. The liaFSR genes 
mutations lead to the susceptibility to Lipid II cycle interfering 
antibiotics and chemicals that influenced the cell membrane 
integrity. Significantly, the LiaFSR system is reported to activate 
transcription of several genes participating in membrane protein 
synthesis, peptidoglycan biosynthesis, envelope chaperone/
proteases, and transcriptional regulators under bacitracin stress 
conditions. These findings demonstrate that LiaFSR system can 
sense cell envelope stress and preserve envelope integrity in 
S. mutans [50]. These data demonstrate that two component 
systems participate in biofilm formation and cell envelope 
response of bacteria. 

Effect on Antibiotic Resistance
The deletion of LiaR is more sensitive to cell wall-active antibiotics 
(vancomycin and bacitracin) and antimicrobial peptides 
(polymixin B, colistin, and nisin) compared to wild-type GBS. 
And mouse models of both GBS sepsis and pneumoniae with 
LiaR mutant GBS significantly attenuates, suggesting that LiaR 
controls expression of genes associated with microbial defense 
against host antimicrobial systems [49]. A LiaR deletion mutant 
results in reversion of daptomycin and telavancin resistance, as 
well as leads to hypersensitive to these antibiotics and several 
antimicrobial peptides, indicating that LiaR is a major regulator to 
control the cell membrane in response to different antibacterial 
agent and polypeptide in daptomycin-resistant Enterococci 
faecalis [51]. A T/A deletion mutation of CiaH, resulting in a 
truncation protein, reverse the resistance to cefotaxime in S. 
pneumoniae [5, 45]. And CiaRH mutants have high defense 
against the effect of cell wall inhibitors, including cycloserine, 
bacitracin, and vancomycin, as well as less sensitive to these 
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drugs [52]. LiaRS of Listeria monocytogenes (L. monocytogenes) 
can be activated by the antibiotics which act on the cell wall, LiaR 
phosphorylation level is controlled by the LiaS group of protein 
kinase and phosphatase dual activity. Phosphatase activity of 
LiaS in the absence of cell wall stress is activated by LiaF [53]. 
The transcription of LiaR gene is increased in L. monocytogenes 
under salt stress. And LiaR mutation strains are markedly more 
susceptible to nisin in comparison with the salt-induced nisin 
resistance of wild-type strains, suggesting that LiaFSR results 
in cross-protection and resistance to nisin [54]. These reports 
manifest that the two component system plays an important role 
in antibiotic resistance of bacteria.

Discussion
The results discussed above suggest that the two component 
signal system is very vital to bacteria, involving in the regulation 
of virulence factor expression, the control of competence, 
modulation of biofilm formation and cell envelope stress 
response, and antibiotic resistance. Bacteria are wildly found in 

nature and two component systems are widespread in bacteria. 
There are significant homologies between HK, RR proteins and 
different genera of bacteria respectively, especially in the residues 
located near active sites. Furthermore the signal transduction 
in mammals has an entirely different mechanism compared 
with bacteria. Moreover inhibitors of two component systems 
have been proved that they have good antimicrobial activity. 
Altogether, this system is potentially very suited as a good drug 
target for the development of novel antibacterials. As such, 
studies on the regulation mechanism of this system on virulence, 
competence and antibiotic resistance have great significance.
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